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ABSTRACT

The Symmetric Galerkin Boundary Element Method is advantageous for the linear elastic fracture and crack-

growth analysis of solid structures, because only boundary and crack-surface elements are needed. However, for

engineering structures subjected to body forces such as rotational inertia and gravitational loads, additional domain

integral terms in the Galerkin boundary integral equation will necessitate meshing of the interior of the domain.

In this study, weakly-singular SGBEM for fracture analysis of three-dimensional structures considering rotational

inertia and gravitational forces are developed. By using divergence theorem or alternatively the radial integration

method, the domain integral terms caused by body forces are transformed into boundary integrals. And due to

the weak singularity of the formulated boundary integral equations, a simple Gauss-Legendre quadrature with a

few integral points is su�cient for numerically evaluating the SGBEM equations. Some numerical examples are

presented to verify this approach and results are compared with benchmark solutions.
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1 Introduction

The Symmetric Galerkin Boundary Element Method (SGBEM) [1–3] has gained increasing

popularity in fracture and crack-growth analysis of solid structures due to its attractive features

of symmetric coef�cient matrices, weak-singularity, and that only boundary & crack-surface ele-

ments are needed. The papers by Bonnet et al. [3–5] are devoted to the formulation, numerical

evaluation and implementation of SGBEM. Atluri et al. [6–9] utilized a simple and straightfor-

ward methodology to develop regularized traction Boundary Integral Equations (tBIE) for two

and three-dimensional linear-elastic solids containing cracks, and also developed weakly-singular

SGBEMs for the fracture and fatigue analysis of various complex structures. However, for the

fracture mechanics problems such as turbine discs and turbine blades of aircraft engines, concrete

gravity dam, etc., SGBEM may lose its advantages, because evaluation of domain integral terms

resulting from body forces such as rotational inertia and gravitational loads leads to the meshing

of the interior of the domain. For this reason, a method to evaluate such domain integral terms

using only boundary meshes, is desired to ef�ciently analyze cracked structures considering body

forces with SGBEM.

For the conventional collocation boundary element method based on Somigliana’s identity for

the displacement vector, a few methods were developed for this purpose. Considering centrifugal

loads presented in rotating gas turbines, Cruse et al. [10,11] transformed domain integrals to

boundary integrals by utilizing the divergence theorem. By making use of the Galerkin vector

or the Green’s second identity, Danson [12] transformed the volume integral terms to boundary

integral terms, for three kinds of body forces, i.e., gravitational loads, the rotational inertia and

steady-state thermal loads. Gao [13] also developed a radial integration technique and applied it

to deal with various body forces. Brebbia et al. [14] developed the dual reciprocity method [15]

which converts the associated domain integrals into boundary integrals by using a series of basis

functions to approximate the body force �elds. Brebbia et al. [16] extended the idea of dual

reciprocity and proposed another approach, multiple reciprocity method.

Different from the conventional collocation boundary element method [17–19] based on the

Somigliana’s identity, formulations of SGBEM [5,8,20] result in weak-form displacement Bound-

ary Integral Equations (dBIE) and weak-form traction Boundary Integral Equations (tBIE). As

a matter of fact, the domain integrals caused by body forces appear both in dBIE and tBIE.

Moreover, it is bene�cial to use tBIE to derive weak-form equations on crack-surfaces, where

displacement discontinuities are to be solved as unknowns [5]. Thus, if SGBEM is utilized for

linear fracture analysis of cracked structures, while for domain integrals appearing in dBIE, one

may refer to the above-mentioned transformation techniques, the treatment for domain integral

terms appearing in tBIE needs further study.

This paper presents the weakly singular traction boundary integral equation for solids under-

going rotational inertia and gravitational Loads. By using the divergence theorem (div) or the

radial integration method (RIM), domain integrals induced by rotational inertia or gravitational

forces are transformed into boundary integrals correspondingly. The derived formulas show that

these transformed boundary integral terms have no in�uence upon the coef�cient matrix of

SGBEM, but only affect the right-hand-side vector. The transformed boundary integral terms

derived by the divergence theorem and radial integration method, possessing 1/r singularity, is

weakly singular. Numerical examples demonstrate that only a few Gauss points are suf�cient to

evaluate boundary integrals. The developed SGBEM with only weakly-singular boundary integrals

are thus applied to simulate various examples of 3D solids with/without considering rotational

inertia and gravitational loads.



CMES, 2022 3

This paper is organized as follows. In Section 2, transformation from domain integrals

induced by gravitational and rotational inertia forces to the boundary integrals by div or RIM

respectively is carried out. Some numerical examples for solids undergoing rotational inertia or

gravitational loads are presented in Sections 3 and 4 with and without cracks correspondingly. In

Section 5, we complete this paper with some concluding remarks.

2 Weakly Singular Galerkin Boundary Integral Equations and Boundary Element Method with Rota-

tional Inertia and Gravitational Loads

Consider a linear elastic, homogenous and isotropic solid undergoing an in�nitesimal elasto-

static deformation, as shown in Fig. 1. � is the solution domain of the problem with the

boundary ∂�. ξ represents the �eld point at a generic location in Cartesian coordinates. x is the

source point of the 3D Kervin’s solution [21] where a unit load in an arbitrary direction p is

applied. The displacement fundamental solution u
∗p
j in the j direction corresponding to this unit

load and other kernel functions G
∗p
ij ,ϕ

∗p
ij ,H

∗
tbpq

derived by u
∗p
j are listed in the appendix. One may

also refer to other forms of these kernel functions in [5,20].

Figure 1: A solution domain with source point x and �eld point ξ

The symmetric Galerkin formulations of displacement and traction Boundary Integral Equa-

tions (d & tBIE) for linear elastic solids can be found in [8]. The derivation of the conventional

boundary element method and SGBEM [5,8,20] generally ignored body forces. Here, the domain

integrals considering body forces are added in the equations:

−
∫

∂�
1
2
δtp (x)up (x)dSx =−

∫

∂�
δtp (x)dSx

∫

�
fj (ξ)u

∗p
j (ξ − x)d�ξ

−
∫

∂�
δtp (x)dSx

∫

∂�
tj (ξ)u

∗p
j (ξ − x)dΓξ

−
∫

∂�
δtp (x)dSx

∫

∂�
Di (ξ)uj (ξ)G

∗p
ij (ξ − x)dΓξ

−
∫

∂�
δtp (x)dSx

∫

∂�
uj (ξ)ni (ξ)ϕ

∗p
ij (ξ − x)dΓξ ,

(1)

∫

∂�
1
2
δub (x) tb (x)dSx =−

∫

∂�
δub (x)na (x)dSx

∫

�
fj (ξ) σ

∗j
ab

(ξ − x)d�ξ

−
∫

∂�
Dt (x) δub (x)dSx

∫

∂�
tj (ξ)G

∗j
tb

(ξ − x)dΓξ

+
∫

∂�
δub (x)na (x)dSx

∫

∂�
tj (ξ)ϕ

∗j
ab

(ξ − x)dΓξ

−
∫

∂�
Dt (x) δub (x)dSx

∫

∂�
Dp (ξ)uq (ξ)H∗

tbpq
(ξ − x)dΓξ .

(2)

In the above two equations, if the domain integral or boundary integral is with respect to the

�eld point, the integral domain is denoted by �ξ or Γξ , respectively; otherwise for source point,

the integral domain is denoted by Sx. up (x) and tp (x) are the displacement and the traction at
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the source point, respectively. δ is the variational symbol which is used to import the Galerkin

weight function. fj (ξ) is the body force per unit volume. ni (ξ) is the component of outward unit

normal at a �eld point on the boundary. Dt is a surface tangential operator:

Dt (ξ)= nr (ξ) erst
∂

∂ξs
(3)

where erst is the permutation coef�cient de�ned by e123 = e231 = e312 = 1; e321 = e213 = e132 =−1;

erst = 0 if any two of the indices are identical.

In this paper, the domain integral:

I =
∫

�
fj (ξ) σ

∗j
ab

(ξ − x)d�ξ (4)

appearing in traction boundary integral Eq. (2) considering rotational inertia and gravitational

loads is transformed into weakly singular boundary integral, using the divergence theorem or the

radial integration method.

The radial integration method is introduced here brie�y. For further details, one may refer

to [13]. Domain integral on the left-hand-side of Eq. (5) with a general function f (ξ) may be

written in Cartesian coordinate system (x1,x2,x3) or in spherical coordinate system (r, θ ,φ) with

the origin at the source point P shown in Fig. 2.

Figure 2: Cartesian and spherical coordinate systems

In the spherical coordinate system
∫

�
f (ξ)d�=

∫ 2π
0

∫ π

0

∫ r(θ ,φ)

0 f (r, θ ,φ) r2dr sin θdθdφ =
∫ 2π
0

∫ π

0 F (θ ,φ) sin θdθdφ (5)

where

F (θ ,φ)=
∫ r(θ ,φ)

0 f (r, θ ,φ) r2dr. (6)

In the spherical coordinate system, the area of in�nitesimal element dS on the spherical

surface can be expressed as

dS= r2 sin θdθdφ. (7)
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If the �eld point is on the boundary Γ of domain �, geometric projective transformation

can be established between the spherical surface in�nitesimal element dS and the real boundary

surface in�nitesimal element dΓ shown in Fig. 3.

dS=
ri

r
nidŴ, (8)

where ni is the component of outward unit normal of �eld point on the real boundary surface

dΓ , ri is the Cartesian component of r, i.e.,

ri = ξi− xi. (9)

Figure 3: Spherical surface dS and real boundary dΓ

By some derivations, the domain integral can be rewritten as
∫

�

f (ξ)dV =
∫

∂�

1

r2
∂r

∂n
F (r)dŴ (10)

where F (r) is evaluated by a radial integration of R2f (ξ) on the segment linking the source point

and the �eld point, i.e.,

F (r)=
∫ r

0

R2f (ξ)dR. (11)

∂r/∂n is the directional derivative at the �eld point on the boundary, which may be expressed

as

∂r

∂n
= r,ini (12)

where ( ),i denotes the partial differentiation with respect to the Cartesian component of �eld

point if not otherwise stated. And r,i can be expressed as

r,i =
∂r

∂ξi
=
ri

r
=−

∂r

∂xi
. (13)



6 CMES, 2022

Some useful formulas related to r (r 6= 0) are listed as follows:

r=
√
riri (14)

r,ir,i = 1 (15)

r,ij =
1

r

(

δij − r,ir,j
)

(16)

r,ii =
2

r
(17)

r,ijk =−
1

r2

(

r,iδjk+ r,jδik+ r,kδij − 3r,ir,jr,k
)

(18)

(

1

r

)

,i

=−
1

r2
r,i (19)

In Subsections 2.1 and 2.2, the domain integral terms with rotational inertia and gravitational

loads in tBIE are transformed into weakly singular boundary integral terms by two methods of

divergence theorem and radial integration method, respectively.

2.1 Transformation of Domain Integrals with Gravitational Loads to Boundary Integrals

Consider a solid body with a constant mass density ρ, and a constant gravitational �eld gi =
const. The body force will also be constant, where

fi = ρgi = const. (20)

In this section, the body force fj (ξ) in Eq. (4) is de�ned as gravitational force. The purpose

of this section is transforming the domain integral of Eq. (4) considering gravitational force into

the boundary integral. Note that σ
∗j
ab

(ξ − x) in Eq. (4) is the stress �eld of Kelvin’s solution:

σ
∗j
ab

(ξ − x)=
1

8π (1− ν) r2

[

(1− 2ν)
(

δabr,j − δajr,b− δbjr,a
)

− 3r,ar,br,j
]

(21)

where ν is the Poisson’s ratio; δab is the Kronecker Delta.

Thus, the constant gravity force fi can be taken outside the integral in Eq. (4). Then we get
∫

�

ρgjσ
∗j
ab

(ξ − x)d�ξ

= ρgj

∫

�

1

8π (1− ν) r2

[

(1− 2ν)
(

δabr,j − δajr,b− δbjr,a
)

− 3r,ar,br,j
]

d�ξ . (22)
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2.1.1 Using Divergence Theorem to Transform Domain Integrals with Gravitational Forces

Substitution of Eq. (19) into Eq. (26), we have
∫

�

ρgjσ
∗j
ab

(ξ − x)d�ξ

=ρgj
1

8π (1− ν)

∫

�

[

2νδab

(

−
1

r2
r,j

)

+ 2 (1− ν) δaj

(

−
1

r2
r,b

)

+2 (1− ν) δbj

(

−
1

r2
r,a

)

− r,abj

]

d�ξ . (23)

Substituting Eq. (22) into Eq. (27), we have
∫

�

ρgjσ
∗j
ab

(ξ − x)d�ξ =

ρgj
1

8π (1− ν)

∫

�

[

2νδab

(

1

r

)

,j

+ 2 (1− ν) δaj

(

1

r

)

,b

+2 (1− ν) δbj

(

1

r

)

,a

− r,abj

]

d�ξ . (24)

Using divergence theorem and Eq. (16), we can get that
∫

�

ρgjσ
∗j
ab

(ξ − x)d�ξ =

ρgj
1

8π (1− ν)

∫

∂�

1

r

[

(2ν − 1) δabnj (ξ)+ 2 (1− ν) δajnb (ξ)

+2 (1− ν) δbjna (ξ)+ r,ar,bnj (ξ)
]

dŴξ . (25)

Note that, a singularity of 1/r appears in the boundary integral of Eq. (29). This integral

is weakly-singular [8], thus Cauchy principal value integral [22] does not need to be taken into

account. The numerical integration method to evaluate this weakly-singular integral is stated

brie�y in Section 2.3.3.

2.1.2 Using the Radial Integration Method to Transform Domain Integrals with Gravitational Forces

Using radial integration method, Eq. (26) can be rewritten as
∫

�

ρgjσ
∗j
ab

(ξ − x)d�ξ = ρgj

∫

∂�

∂r

∂n

1

r2
F (r)dŴξ (26)

where

F (r)=
∫ r

0

R2 1

8π (1− ν)R2

[

(1− 2ν)
(

δabR,j − δajR,b− δbjR,a

)

− 3R,aR,bR,j

]

dR. (27)
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From Eq. (13) and Fig. 2, one can �nd that R,i is the cosine between r and coordinate axis

i, i.e., R,i = r,i. Thus, R,i can be taken out of this radial integral Eq. (31) directly. Substitution of

Eq. (31) into Eq. (30) gives
∫

�

ρgjσ
∗j
ab

(ξ − x)d�ξ

=ρgj

∫

∂�

1

8π (1− ν)

1

r

∂r

∂n

[

(1− 2ν)
(

δabr,j − δajr,b− δbjr,a
)

− 3r,ar,br,j
]

dŴξ . (28)

Note that, when the �eld point approaches the source point, ∂r/∂n→ 0. Singularity of the

boundary integral in Eq. (32) therefore is weaker than that in Eq. (29).

2.2 Transform Domain Integrals with Rotational Inertia to Boundary Integrals

About an analytical expression of the rotational inertial force in detail, one may refer to [19].

Here we introduce it brie�y. Consider a solid body of uniform mass density ρ rotating about one

axis with angular velocity ωi. For simplicity and without loss of the generality, we consider that

the axis of rotation passes through the origin of Cartesian coordinate system shown in Fig. 4.

Figure 4: The rotational axis passing through the origin of Cartesian coordinate system

By the D’Alembert’s principle, body force resulting from the rotational inertia is

f (ξ)=−ρω× (ω× ξ) . (29)

Eq. (33) may be written in index notation as

fj (ξ)=−ρejqkωqekpiωpξi = hjiξi (30)

where

hji =−ρejqkωqekpiωp. (31)

Note that hji is constant and can be described in a more straightforward way:

[

hji
]

= ρ





ω2
2 +ω2

3 −ω1ω2 −ω3ω1

−ω1ω2 ω2
3 +ω2

1 −ω2ω3

−ω3ω1 −ω2ω3 ω2
1 +ω2

2



 . (32)
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Then this dynamic problem can be treated as an elastostatics problem. Using Eqs. (4), (25)

and (34), we get
∫

�

hjiξiσ
∗j
ab

(ξ − x)d�ξ

=
∫

�

hjiξi
1

8π (1− ν) r2

[

(1− 2ν)
(

δabr,j − δajr,b− δbjr,a
)

− 3r,ar,br,j
]

d�ξ . (33)

2.2.1 Using Divergence Theorem to Transform Domain Integrals with Inertial Force

Similar to the derivation of Eq. (28), the inertial force domain integrals with the rotational

inertia can be written as
∫

�

hjiξiσ
∗j
ab

(ξ − x)d�ξ

=
∫

�

1

8π (1− ν) r2
hji

[

2νδabξi

(

1

r

)

,j

+ 2 (1− ν) δajξi

(

1

r

)

,b

+2 (1− ν) δbjξi

(

1

r

)

,a

− ξir,abj

]

d�ξ . (34)

Substituting Eqs. (39) and (40) into Eq. (38) and using Eq. (17),
(

ξi
1

r

)

,j

= δij
1

r
+ ξi

(

1

r

)

,j

(35)

(

ξir,ab
)

,j
= δijr,ab+ ξir,abj (36)

We get
∫

�

hjiξiσ
∗j
ab

(ξ − x)d�ξ

=
∫

�

hji
1

8π (1− ν)

[

2νδab

(

ξi
1

r

)

,j

− νδabδijr,kk

+ 2 (1− ν) δaj

(

ξi
1

r

)

,b

− (1− ν) δajδbir,kk

+2 (1− ν) δbj

(

ξi
1

r

)

,a

− (1− ν) δbjδair,kk+ δijr,ab−
(

ξir,ab
)

,j

]

d�ξ . (37)

Then using the divergence theorem, we get
∫

�

hjiξiσ
∗j
ab

(ξ − x)d�ξ

=
∫

∂�

1

8π (1− ν)

1

r

[

2νδabnj (ξ)hjiξi− νδabgiirr,mnm (ξ)



10 CMES, 2022

+ 2 (1− ν)nb (ξ)haiξi+ 2 (1− ν)na (ξ)hbiξi

− (1− ν) rr,mnm (ξ) (hab+ hba)+ rhiir,anb (ξ)

−
(

δab− r,ar,b
)

nj (ξ)hjiξi
]

dŴξ . (38)

Note that the boundary integrals in Eq. (42) have the property of 1/r weak-singularity.

2.2.2 Using Radial Integration method to Transform Domain Integrals with Inertial Force

Using radial integration method, Eq. (37) may be rewritten as
∫

�

hjiξiσ
∗j
ab

(ξ − x)d�ξ =
∫

∂�

1

r2
∂r

∂n
F (r)dŴξ (39)

F (r)=
∫ r

0

R2hjiξi
1

8π (1− ν)R2

[

(1− 2ν)
(

δabR,j − δajR,b− δbjR,a

)

− 3R,aR,bR,j

]

dR. (40)

As is mentioned above, R,j can be taken outside the integral directly. Note that, F (r) is the

radial integral about the �eld point ξ . Substitution of Eq. (9) into Eq. (44) gives

F (r)= hji
1

8π (1− ν)

[

(1− 2ν)
(

δabr,j − δajr,b− δbjr,a
)

− 3r,ar,br,j
]

∫ r

0

R
(

R,i+
xi

R

)

dR. (41)

Note that, for radial integral F (r), source point x is constant. We can directly compute this

radial integral. Substitution of Eq. (45) into Eq. (43) gives
∫

�

hjiξiσ
∗j
ab

(ξ − x)d�ξ

=
∫

∂�

1

16π (1− ν)

1

r

∂r

∂n
hji (ξi+ xi)

[

(1− 2ν)
(

δabr,j − δbjr,a− δajr,b
)

− 3r,ar,br,j
]

dŴξ . (42)

Eq. (46) is the boundary integral form with the rotational inertia force obtained by the radial

integration method.

2.3 Weakly-Singular SGBEM with Numerical Implementation

We have obtained weakly singular boundary integrals transformed from domain integrals con-

sidering rotational inertia and gravitational loads by the divergence theorem or radial integration

method. In this section, the displacement and traction boundary integral equations considering

crack surfaces and rotational inertia and gravitational loads are given. Then numerical evaluation

of weakly singular double layer surface integrals by using quadrilateral elements is introduced

brie�y.

2.3.1 Traction and Displacement BIEs Considering Rotational Inertia and Gravitational Loads by

Divergence Theorem

Consider a crack embedded in the domain � shown in Fig. 5. The crack surfaces are denoted

as S+
C and S−

C which are geometrically coincident. The outward normal direction of S+
C is opposite

to that of S−
C . With the assumption that the traction acting on crack surfaces satis�es that t+j +

t−j = 0, the boundary of the domain � can be de�ned as

∂�= Su+St+SC (43)
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where Su is the part of boundary where displacement is known and St is the part of boundary

where traction is known. The displacement discontinuity on crack surfaces may be de�ned as

1u= u+
(

x+
)

− u−
(

x−
)

(44)

where u+
(

x+
)

is the displacement of point x+ on S+
C ; u

− (

x−
)

is the displacement of point x−

on S−
C ; ∆u must be zero around the crack front. Points x+ and x− are geometrically coincident.

Figure 5: Displacement discontinuity in domain �

If the weak-form traction boundary integral equation is applied on St, we may get that

1

2

∫

St

δub (x) tb (x)dSx

+
∫

St
δub (x)na (x)dSx

∫

Su+St
ρgj

1

8π (1− ν)

1

r

[

(2ν − 1) δabnj (ξ)

+2 (1− ν) δajnb (ξ)+ 2 (1− ν) δbjna (ξ)+ r,ar,bnj (ξ)
]

dŴξ

+
∫

St
δub (x)na (x)dSx

∫

Su+St

1

8π (1− ν)

1

r

[

2νδabnj (ξ)hjiξi− νδabhiirr,mnm (ξ)

+2 (1− ν)nb (ξ)haiξi+ 2 (1− ν)na (ξ)hbiξi
− (1− ν) rr,mnm (ξ) (hab+ hba)+ rhiir,anb (ξ)−

(

δab− r,ar,b
)

nj (ξ)hjiξi
]

dŴξ

=−
∫

St
Dtδub (x)dSx

∫

Su+St tj (ξ)G
∗j
tb

(ξ − x)dŴξ

+
∫

St
δub (x)na (x)dSx

∫

Su+St tj (ξ)ϕ
∗j
ab

(ξ − x)dŴξ

−
∫

St
Dtδub (x)dSx

∫

Su+StDpuq (ξ)H∗
tbpq

(ξ − x)dŴξ

−
∫

St
Dtδub (x)dSx

∫

Sc
Dp1uq (ξ)H∗

tbpq
(ξ − x)dŴξ .

(45)

And if the weak-form traction boundary integral equation is applied on the crack surfaces

Sc, we may get that
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∫

Sc
δ1ub (x) tb (x)dSx

+
∫

Sc

δ1ub (x)na (x)dSx

∫

Su+St
ρgj

1

8π (1− ν)

1

r

[

(2ν − 1) δabnj (ξ)

+2 (1− ν) δajnb (ξ)+ 2 (1− ν) δbjna (ξ)+ r,ar,bnj (ξ)
]

dŴξ

+
∫

Sc
δ1ub (x)na (x)dSx

∫

Su+St

1

8π (1− ν)

1

r

[

2νδabnj (ξ)hjiξi

−νδabhiirr,mnm (ξ)+ 2 (1− ν)nb (ξ)haiξi+ 2 (1− ν)na (ξ)hbiξi
− (1− ν) rr,mnm (ξ) (hab+ hba)+ rhiir,anb (ξ)−

(

δab− r,ar,b
)

nj (ξ)hjiξi
]

dŴξ

=−
∫

Sc
Dtδ1ub (x)dŴx

∫

Su+St tj (ξ)G
∗j
tb

(ξ − x)dŴξ

+
∫

Sc
δ1ub (x)na (x)dSx

∫

Su+St tj (ξ)ϕ
∗j
ab

(ξ − x)dŴξ

−
∫

Sc
Dtδ1ub (x)dSx

∫

Su+StDpuq (ξ)H∗
tbpq

(ξ − x)dŴξ

−
∫

Sc
Dtδ1ub (x)dSx

∫

Sc
Dp1uq (ξ)H∗

tbpq
(ξ − x)dŴξ .

(46)

Finally, the weak-form displacement boundary integral equation is applied on the prescribed

displacement boundary surfaces Su, we may get that

−
1

2

∫

Su

δtp (x)up (x)dSx

+
∫

Su
δtp (x)dSx

∫

Su+St

1+ ν

4πE

[

∂r

∂n
ρgp−

1

2 (1− ν)
ρgjnj (ξ) r,p

]

dŴξ

+
∫

Su
δtp (x)dSx

∫

Su+St

1+ ν

4πE

[

hpiξir,jnj (ξ)− rhpini (ξ)

−
1

2 (1− ν)
r,pnj (ξ)hjiξi+

1

2 (1− ν)
rnp (ξ)hjj

]

dŴξ

=−
∫

Su
δtp (x)dSx

∫

Su+St tj (ξ)u
∗p
j (x, ξ)dŴξ

−
∫

Su
δtp (x)dSx

∫

Su+StDiuj (ξ)G
∗p
ij (x, ξ)dŴξ

−
∫

Su
δtp (x)dSx

∫

Su+St uj (ξ)ni (ξ)ϕ
∗p
ij (x, ξ)dŴξ

−
∫

Su
δtp (x)dSx

∫

Sc
Di1uj (ξ)G

∗p
ij (x, ξ)dŴξ

−
∫

Su
δtp (x)dSx

∫

Sc
1uj (ξ)ni (ξ)ϕ

∗p
ij (x, ξ)dŴξ .

(47)

Eqs. (49)–(51) are the weakly-singular traction and displacement boundary integral equations

considering rotational inertia and gravitational loads obtained by using divergence theorem. E

and ν are Young’s modulus and Poisson’s ratio of the isotropic solid, respectively. Then we may

discretize boundary surfaces ∂� into boundary elements. Traction �eld functions can be written

in terms of nodal shape functions as ti = tmi N
m at Su, ti = t

m
i N

m at St; similarly displacement �eld

functions can be written as ui = umi N
m at Su, ui = umi N

m at St, where an overline denotes that

the nodal variables are known. In this way, the discretized traction and displacement SGBEM

equations are obtained, and we denote this method as SGBEM-div in this paper.
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2.3.2 Traction and Displacement BIEs Considering Rotational Inertia and Gravitational Loads by the

Radial Integration Method

Similar to Eqs. (49)–(51), the weakly-singular traction and displace BIE considering rotational

inertia and gravitational loads by radial integration method can be written as follows:

1

2

∫

St

δub (x) tb (x)dSx

+
∫

St
δub (x)na (x)dSx

∫

Su+St
ρgj

1

8π (1− ν)

1

r

∂r

∂n

[

(1− 2ν)
(

δabr,j

−δajr,b− δbjr,a
)

− 3r,ar,br,j
]

dŴξ

+
∫

St
δub (x)na (x)dSx

∫

Su+St

1

16π (1− ν)

1

r

∂r

∂n
hji (ξi+ xi)

[

(1− 2ν)
(

δabr,j

−δbjr,a− δajr,b
)

− 3r,ar,br,j
]

dŴξ

=−
∫

St
Dtδub (x)dŴx

∫

Su+St tj (ξ)G
∗j
tb

(ξ − x)dŴξ

+
∫

St
δwb (x)na (x)dSx

∫

Su+St tj (ξ)ϕ
∗j
ab

(ξ − x)dŴξ

−
∫

St
Dtδub (x)dSx

∫

Su+StDpuq (ξ)H∗
tbpq

(ξ − x)dŴξ

−
∫

St
Dtδub (x)dSx

∫

Sc
Dp1uq (ξ)H∗

tbpq
(ξ − x)dŴξ .

(48)

1

2

∫

Sc

δub (x) tb (x)dSx

+
∫

Sc
δub (x)na (x)dSx

∫

Su+St
ρgj

1

8π (1− ν)

1

r

∂r

∂n

[

(1− 2ν)
(

δabr,j

−δajr,b− δbjr,a
)

− 3r,ar,br,j
]

dΓξ

+
∫

Sc
δub (x)na (x)dSx

∫

Su+St

1

16π (1− ν)

1

r

∂r

∂n
hji (ξi+ xi)

[

(1− 2ν)
(

δabr,j

−δbjr,a− δajr,b
)

− 3r,ar,br,j
]

dΓξ

=−
∫

Sc
Dtδub (x)dΓx

∫

Su+St tj (ξ)G
∗j
tb

(ξ − x)dΓξ

+
∫

Sc
δwb (x)na (x)dSx

∫

Su+St tj (ξ)ϕ
∗j
ab

(ξ − x)dΓξ

−
∫

Sc
Dtδub (x)dSx

∫

Su+StDpuq (ξ)H∗
tbpq

(ξ − x)dΓξ

−
∫

Sc
Dtδub (x)dSx

∫

Sc
Dp∆uq (ξ)H∗

tbpq
(ξ − x)dΓξ .

(49)

−
1

2

∫

Su

δtp (x)up (x)dSx

+
∫

Su
δtp (x)dSx

∫

Su+St
1+ ν

16πE (1− ν)

∂r

∂n

[

(3− 4ν)ρgp (ξ)+ r,pr,jρgj (ξ)
]

dŴξ

+
∫

Su
δtp (x)dSx

∫

Su+St
1+ ν

24πE (1− ν)
r,mnm (ξ)

[

(3− 4ν) δpj

+r,pr,j
]

hji

(

ξi+
1

2
xi

)

dŴξ

=−
∫

Su
δtp (x)dSx

∫

Su+St tj (ξ)u
∗p
j (x, ξ)dŴξ

−
∫

Su
δtp (x)dSx

∫

Su+StDiuj (ξ)G
∗p
ij (x, ξ)dŴξ

−
∫

Su
δtp (x)dSx

∫

Su+St uj (ξ)ni (ξ)ϕ
∗p
ij (x, ξ)dŴξ

−
∫

Su
δtp (x)dSx

∫

Sc
Di1uj (ξ)G

∗p
ij (x, ξ)dŴξ

−
∫

Su
δtp (x)dSx

∫

Sc
1uj (ξ)ni (ξ)ϕ

∗p
ij (x, ξ)dŴξ .

(50)
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By the same discretization procedure mentioned above for Eqs. (52)–(54), the SGBEM equa-

tions obtained by radial integration method can be obtained, and we denote this as SGBEM-RIM

in this paper.

It can be seen that, for Eqs. (49), (50) using the divergence theorem, there exists 1/r singu-

larity in boundary integral terms containing rotational inertia and gravitational loads; while for

Eqs. (52), (53) using the radial integration method, there exists 1/r · ∂r/∂n in boundary integral

terms containing rotational inertia and gravitational loads. As is mentioned above, when the �eld

point approaches the source point, ∂r/∂n→ 0. In other words, by the radial integration method,

the obtained boundary integral terms may have weaker singularity compared with those obtained

by the divergence theorem.

2.3.3 Numerical Evaluation of Weakly-Singular Double Surface Integrals Using Quadrilateral Elements

In this paper, 8-noded quadrilateral isoparametric elements are selected for the numerical

implementation, and quarter-point singular quadrilateral elements with two mid-side nodes shifted

towards the crack front as shown in Fig. 6 are adopted at the crack front. For the numerical

evaluation of double surface integrals by quadrilateral isoparametric elements in detail, one may

refer to [3], here it is introduced brie�y.

Figure 6: A quarter-point singular quadrilateral element

As shown in Fig. 7, there are four quadrilateral elements A, B, C, D. In the computation

of the double layer surface (Sx & Γξ ) integrals, two elements will form a pair. One appears in

the Sx, while the other appears in Γξ . There exist four kinds of cases: coincident elements, e.g.,

Ax & Aξ ; adjacent elements sharing one edge, e.g., Ax & Bξ sharing edge pq; adjacent elements

sharing one vertex, e.g., Ax & Cξ sharing vertex p; distinct elements, e.g., Ax & Dξ . Numerical

integral for a pair of distinct elements do not need special treatment. But for the �rst three cases,

a coordinate transformation is used for numerical integration, which can introduce a Jacobian

exploited to cancel singularity of the boundary integral.
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Figure 7: Cases of pairs of quadrilateral elements

For a pair of distinct elements, standard isoparametric coordinate transformation is used

together with the standard Gauss-Legendre quadrature. As an example, the double layer sur-

face integral considering gravitational loads obtained by the divergence theorem in Eq. (49) is

considered at here.

I =
∫

St
δub (x)na (x)dSx

∫

Su+St ρgj
1

8π (1− ν)

1

r

[

(2ν − 1) δabnj (ξ)

+2 (1− ν) δajnb (ξ)+ 2 (1− ν) δbjna (ξ)+ r,ar,bnj (ξ)
]

dŴξ .
(51)

For simplicity, we rewrite it as

I =
∫

S dSx
∫

S B (x, ξ)dŴξ =
∫ 1
0

∫ 1
0

∫ 1
0

∫ 1
0 B

′
[

x
(

x
′
1,x

′
2

)

, ξ
(

ξ
′
1, ξ

′
2

)]

dx
′
1dx

′
2dξ

′
1dξ

′
2 (52)

where x
′
1,x

′
2, ξ

′
1, ξ

′
2 are isoparametric coordinates corresponding to Cartesian coordinates

x1,x2, ξ1, ξ2. It should be noted that, in Eq. (56), B′
[

x
(

x
′
1,x

′
2

)

, ξ
(

ξ
′
1, ξ

′
2

)]

includes the Jacobians

of the coordinate transformation.

For cases of coincident elements, adjacent elements sharing one edge, adjacent elements

sharing one vertex, further coordinate transformations are given in below to cancel the singularity

caused by 1/r appearing in Eq. (56).

For a pair of coincident elements, local isoparametric coordinates are shown in Fig. 8. The

boundary integral domain is partitioned into 8 subdomains. For each case we may implement a

further transformation of variables listed in Table 1.

Figure 8: Isoparametric coordinates for a pair of coincident elements
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Table 1: Transformation of variables for a pair of coincident elements

Case x′1 x′2 ξ ′1 ξ ′2

1 v3 v4 v1+ v3 v2+ v4
2 v3 v2+ v4 v1+ v3 v4
3 v1+ v3 v2+ v4 v3 v4
4 v1+ v3 v4 v3 v2+ v4
5 v4 v3 v2+ v4 v1+ v3
6 v2+ v4 v3 v4 v1+ v3
7 v2+ v4 v1+ v3 v4 v3
8 v4 v1+ v3 v2+ v4 v3

In Table 1, v1, v2, v3, v4 are de�ned as follows:

v1 =w1

v2 =w1w2

v3 =w3 (1−w1)

v4 =w4 (1−w1w2)

with

0≤w1 ≤ 1

0≤w2 ≤ 1

0≤w3 ≤ 1

0≤w4 ≤ 1

. (53)

The Jacobian for such a variable transformation can be used to cancel the singularity in

Eq. (56):

J =w1 (1−w1) (1−w1w2) . (54)

For a pair of coincident elements, Eq. (56) can be rewritten as

I =
∑8

case=1

∫ 1
0

∫ 1
0

∫ 1
0

∫ 1
0 B

′
[

x
(

x
′
1,x

′
2

)

, ξ
(

ξ
′
1, ξ

′
2

)]

w1 (1−w1) (1−w1w2)dw1dw2dw3dw4. (55)

For a pair of common-edge elements, local isoparametric coordinates are shown in Fig. 9.

Figure 9: Local isoparametric coordinates for a pair of common-edge elements

This boundary integral domain is partitioned into 6 subdomains. For each case we may

implement a transformation of variables listed in Table 2.
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Table 2: A transformation of variables and Jacobians for common-edge elements

Case x′1 x′2 ξ ′1 ξ ′2 Jacobians

1 v4 v2 v1+ v4 v3 J1
2 v5 v1 v5+ v2 v3 J2
3 v5 v3 v5+ v2 v1 J2
4 v1+ v4 v2 v4 v3 J1
5 v5+ v2 v1 v5 v3 J2
6 v5+ v2 v3 v5 v1 J2

In Table 2, v1, v2, v3, v4, v5 and J1,J2 are de�ned as follows:

v1 =w1

v2 =w1w2

v3 =w1w3

v4 =w4 (1−w1)

v5 =w4 (1−w1w2)

with

0≤w1 ≤ 1

0≤w2 ≤ 1

0≤w3 ≤ 1

0≤w4 ≤ 1

. (56)

Jacobians of the variable transformation are

J1 =w2
1 (1−w1)

J2 =w2
1 (1−w1w2)

. (57)

For a pair of elements with a common vertex, local isoparametric coordinates is shown in

Fig. 10.

Figure 10: Isoparametric coordinates for a pair of elements with a common vertex

This boundary integral domain is partitioned into 4 subdomains. For each case, a transfor-

mation of variables listed in Table 3 is implemented.
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Table 3: The transformation of variables for a pair of elements with a common vertex

Case x
′
1 x

′
2 ξ ′1 ξ ′2

1 v1 v2 v3 v4
2 v2 v1 v3 v4
3 v2 v3 v1 v4
4 v2 v3 v4 v1

Variables v1, v2, v3, v4 are de�ned as follows:

v1 =w1

v2 =w1w2

v3 =w1w3

v4 =w1w4

with

0≤w1 ≤ 1

0≤w2 ≤ 1

0≤w3 ≤ 1

0≤w4 ≤ 1

. (58)

The Jacobian of the variable transformation can be used to cancel the singularity in Eq. (56):

J3 =w3
1. (59)

3 Numerical Examples without Cracks

In this section and the next section some examples without or with crack are implemented

respectively to verify SGBEM-div or SGBEM-RIM developed in Section 2.

3.1 Numerical Test of the Effect of the Number of Integration Points

In this section, the double surface integral term in Eq. (55), for a pair of coincident square

elements, is evaluated using the quadrature method given in Section 2.3.3, considering the problem

of a cube of two kinds of meshes undergoing gravity given in Section 3.2. Fig. 11 shows the

logarithmic value of the absolute value of relative errors for the numerical integration of both

a pair of square elements and a pair of distorted elements. The error is very small when the

number of Gauss integration points is larger than 6. Thus, 8 gauss points are used for the eval-

uation of double layer surface integrals in the following examples except for the cube undergoing

gravitational loads in Section 3.2.

The effect of the number of integration points is shown in Fig. 12, where the relative error

is de�ned as follows: relative error= [I (n)− I (48)]/I (48)× 100%, where I(n) is evaluated double

surface integral with n Gauss points.
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Figure 11: Relative errors for the evaluated weakly-singular boundary integral
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3.2 A Cube Undergoing Gravitational Loads

We consider a cube with dimensions of 10 mm× 10 mm× 10 mm [13], which is discretized

into 96 quadratic boundary elements with 290 boundary nodes. Two kinds of meshes of the cube

is presented in Fig. 12. The surface z= 0 is completely �xed. The elastic constants are chosen to

be the Young’s modulus E = 1000Mpa and the Poisson’s ratio ν = 0.

Figure 12: Mesh of a cube (a) elements being square, (b) elements being distorted

The gravitational force ρg3 =−10 Mpa/mm is considered. And the analytical solution for the

vertical displacement is

uz =
ρg3

E
z

(

L−
z

2

)

. (60)

Because the analytical solution is only quadratic with respect to z coordinate, 3 Gauss points

are used for the evaluation of vertical displacements along the direction z shown in Table 4. The

computational results of both square and distorted elements are in excellent agreement with the

exact solution.

Table 4: Vertical displacements of cube undergoing gravitational loads

Mesh z/mm 2.5 5 7.5 10

Exact –0.218750 –0.375000 –0.468750 –0.500000

Square elements SGBEM-div –0.218726 –0.374955 –0.468712 –0.499952

SGBEM-RIM –0.218726 –3.74973 –0.468741 –0.499966

Distorted elements SGBEM-div –0.218718 –0.374947 –0.468705 –0.499971

SGBEM-RIM –0.218727 –0.374977 –0.468732 –0.499943
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3.3 A Rotating Disk

In the second example, a disk with inner radius of 0.1m and outer radius of 0.2 m, rotating

at a constant angular speed ω = 10000 rpm (Fig. 13), is considered. The thickness of this disk is

t = 0.02m. The elastic constants are chosen to be the Young’s modulus E = 7000Mpa and the

Poisson’s ratio ν = 0.3; density ρ = 2800 kg/m3. All the boundary surface of this disk is free from

traction. The distribution of displacement in a rotating elastic disk

uR =
3+ ν

8
ρω2

[

(

R2
i +R2

o

)

(1− ν)+R2
i R

2
o (1+ ν)

1

R2
−

1− ν2

3+ ν
R2

]

R

E
(61)

can be found in [23] where R is the radial coordinate, E the Young’s modulus and ν the Poisson’s

ratio. The boundary of the disk is discretized with 3 elements in radial direction, 16 elements

in circumferential direction, and 1 element in axial direction (Fig. 14). 4 nodes on the x-y plane

highlighted in Fig. 14 are �xed in z direction; 2 nodes on the x-z plane are �xed in y direction;

and 2 nodes on the y-z plane are �xed in x direction.

Figure 13: A rotating disk

Figure 14: SGBEM dense mesh of the rotating disk

Table 5 shows the computed radial displacements with the mesh shown in Fig. 14. “Exact”

denotes exact solutions by the Eq. (61). For each point, “Maximum error” of SGBEM-div and

SGBEM-RIM is computed with the exact solution as the reference. As can be seen, computational

results by SGBEM-div and SGBEM-RIM are in excellent agreement with the exact solutions.
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Table 5: Radial displacements by SGBEM-div and -RIM (10−3 m)

R/m 0.1 0.13 0.16 0.2

Exact 1.52431 1.43744 1.39697 1.33788

SGBEM-div 1.52349 1.43717 1.39624 1.33735

SGBEM-RIM 1.52352 1.43720 1.39628 1.33738

Maximum error –0.0538% –0.0188% –0.0523% –0.0396%

4 Numerical Examples with Cracks

In this section, numerical examples with cracked solids considering body forces are given. In

each example, after obtaining the displacement discontinuities for the quarter-point node using

the developed SGBEM method, displacement extrapolation is used to calculate the stress intensity

factors.

4.1 A Cuboid Hanging under Its Own Weight with a Through-Thickness Crack

Consider a solid cuboid with a crack of length 2a (see Fig. 15) under gravitational loads [24],

where l = 4, b= 1, h= 0.5l, a= 0.1, t= 0.2, ρg =−10. The elastic constants are chosen to be

E = 1000 and ν = 0.

Figure 15: A cracked cuboid hanging under its own weight

Computed stress intensity factors are presented in Table 6, in which “Error” means the rela-

tive error between SGBEM–div and FEM solution. For this through-thickness crack, KI results

computed by SGBEM-RIM are in better agreement with the FEM solution.
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Table 6: KI for the problem shown in Fig. 15

x = 0.1 x = –0.1

y/t 0.3 0.5 0.7 0.3 0.5 0.7

SGBEM-div 11.4655 11.4744 11.4654 11.4655 11.4744 11.4655

Error 1.64% 1.72% 1.64% 1.64% 1.72% 1.64%

SGBEM-RIM 11.2705 11.2658 11.2705 11.2705 11.2658 11.2705

FEM 11.28 11.28 11.28 11.28 11.28 11.28

4.2 A Rotating Disk with a through-Thickness Crack

A rotating disk with a through-thickness crack (a = 0.03 m) is computed shown in Fig. 16.

The rotating disk is identical to the disk in Section 3.3. Again, excellent agreement between the

computed SGBEM results and FEM results are shown in Tables 7 and 8.

Figure 16: SGBEM mesh of a cracked rotating disk

Table 7: KI of through-thickness crack on rotating disk (MPa
√
m)

z/t 0.25 0.5 0.75

SGBEM-div 36.497 36.540 36.494

FEM 36.150 36.303 36.150

Error 0.96% 0.65% 0.95%

Table 8: KI of through-thickness crack on rotating disks (MPa
√
m)

z/t 0.25 0.5 0.75

SGBEM-RIM 36.498 36.541 36.495

FEM 36.150 36.303 36.150

Error 0.96% 0.66% 0.95%
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4.3 A Rotating Disk with Semi-Elliptic Surface Cracks

This section gives a series of results for a cracked disk in Fig. 17 with various semi-elliptic

surface cracks, shown in Fig. 18. All the parameters of this disk are identical to that of disk in

Section 3, except for the semi-elliptic cracks. Various semi-elliptic cracks with a �xed depth (a =
0.004 m), and various semi-elliptic cracks with a �xed length/depth ratio (b/a = 2), are computed

using both SGBEM-div and SGBEM-RIM.

Figure 17: A disk with a semi-elliptic surface crack

Figure 18: Various semi-elliptic cracks with a �xed depth (a = 0.004 m), and various semi-elliptic

cracks with a �xed length/depth ratio (b/a = 2)

For simplicity, we give the stress intensity factor KI at point P, i.e., the deepest point of

various semi-elliptic cracks, as shown in Figs. 19, and 20. These results can be used for the

benchmark solutions for future studies.
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Figure 19: KI at the deepest point of semi-elliptic cracks with a �xed depth (a = 0.004 m)
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Figure 20: KI at the deepest point of semi-elliptic cracks with a �xed length/depth ratio (b/a = 2)

5 Conclusions

In this paper, weakly-singular SGBEM for fracture analysis of three-dimensional structures

considering rotational inertia and gravitational forces is developed. By using the divergence theo-

rem (div) or the radial integration method (RIM), rotational inertia or gravitational forces induced

domain integrals are transformed into boundary integrals. The derived boundary integral terms

with the gravitational and inertial forces are weakly-singular, which only in�uence the SGBEM

right-hand-side vector.

Several numerical examples of solids with and without cracks undergoing body forces are

studied. The calculated stress intensity factors and displacements show high accuracy compared

with reference solutions. The test of numerical integration also shows that only a small number

of quadrature points are needed.

The symmetric Galerkin boundary element method considering gravity and inertia loads

presented in this paper appears promising in the fracture analysis of structural components

with body forces, such as dams and rotating machineries. Furthermore, with some effort, the

methodology given in this study can also be extended to deal with domain integrals for SGBEM

with thermoelastic problems, which will be given in a subsequent work.



CMES, 2022 25

Funding Statement: The �rst four authors acknowledge the support of the National Natural

Science Foundation of China (12072011).

Con�icts of Interest: The authors declare that they have no con�icts of interest to report regarding

the present study.

References

1. Sutradhar, A., Paulino, G. H., Gray, L. J. (2008). Symmetric galerkin boundary element method. Berlin,

Heidelberg: Springer.

2. Bonnet, M., Maier, G., Polizzotto, C. (1998). Symmetric galerkin boundary element methods. Applied

Mechanics Reviews, 51(11), 669–704. DOI 10.1115/1.3098983.

3. Novati, G., Frangi, A. (2002). Symmetric galerkin BEM in 3D elasticity: Computational aspects and

applications to fracture mechanics. In: Selected topics in boundary integral formulations for solids and �uids.

Vienna: Springer.

4. Bonnet, M. (1999). Boundary integral equation methods for solids and �uids.Meccanica, 34(4), 301–302.

DOI 10.1023/A:1004795120236.

5. Li, S., Mear, M. E. (1998). Singularity-reduced integral equations for displacement discontinuities

in three-dimensional linear elastic media. International Journal of Fracture, 93(1), 87–114. DOI

10.1023/A:1007513307368.

6. Okada, H., Rajiyah, H., Atluri, S. N. (1988). A novel displacement gradient boundary element method

for elastic stress analysis with high accuracy. Journal of Applied Mechanics, 55(4), 786–794. DOI

10.1115/1.3173723.

7. Okada, H., Rajiyah, H., Atluri, S. N. (1989). Non-hyper-singular integral-representations for velocity

(displacement) gradients in elastic/plastic solids (small or �nite deformations). Computational Mechanics,

4(3), 165–175. DOI 10.1007/BF00296664.

8. Han, Z. D., Atluri, S. N. (2003). On simple formulations of weakly-singular traction & displacement BIE,

and their solutions through Petrov-Galerkin approaches. Computer Modeling in Engineering & Sciences,

4(1), 5–20. DOI 10.1.1.610.8720.

9. Dong, L. T., Atluri, S. N. (2012). SGBEM (Using non-hyper-singular traction BIE), and super elements, for

non-collinear fatigue-growth analyses of cracks in stiffened panels with composite-patch repairs. Computer

Modeling in Engineering & Sciences, 89(5), 417–458. DOI 10.3970/cmes.2012.089.417.

10. Cruse, T. A. (1975). Boundary-integral equation method for three-dimensional elastic fracture mechanics

analysis. AFOSR-TR-75-0813 Interim Report.

11. Cruse, T. A., Snow, D. W., Wilson, R. B. (1977). Numerical solutions in axisymmetric elasticity. Computers

& Structures, 7(3), 445–451. DOI 10.1016/0045-7949(77)90081-5.

12. Danson, D. J. (1981). A boundary element formulation of problems in linear isotropic elasticity with body

forces. In: Boundary element methods. Berlin, Heidelberg: Springer.

13. Gao, X. W. (2002). The radial integration method for evaluation of domain integrals with

boundary-only discretization. Engineering Analysis with Boundary Elements, 26(10), 905–916. DOI

10.1016/S0955-7997(02)00039-5.

14. Nardini, D., Brebbia, C. A. (1983). A new approach to free vibration analysis using boundary elements.

Applied Mathematical Modelling, 7(3), 157–162. DOI 10.1016/0307-904X(83)90003-3.

15. Partridge, P. W., Brebbia, C. A., Wrobel, L. C. (1992). The dual reciprocity boundary element method.

Southampton Boston: Computational Mechanics Publications.

16. Nowak, A. J., Brebbia, C. A. (1989). The multiple-reciprocity method. A new approach for transforming

BEM domain integrals to the boundary. Engineering Analysis with Boundary Elements, 6(3), 164–167. DOI

10.1016/0955-7997(89)90032-5.

17. Aliabadi, F. M. H. (2018). Boundary element methods. In: Encyclopedia of continuum mechanics. Berlin,

Heidelberg: Springer.

http://dx.doi.org/10.1115/1.3098983
http://dx.doi.org/10.1023/A:1004795120236
http://dx.doi.org/10.1023/A:1007513307368
http://dx.doi.org/10.1115/1.3173723
http://dx.doi.org/10.1007/BF00296664
http://dx.doi.org/10.1.1.610.8720
http://dx.doi.org/10.3970/cmes.2012.089.417
http://dx.doi.org/10.1016/0045-7949(77)90081-5
http://dx.doi.org/10.1016/S0955-7997(02)00039-5
http://dx.doi.org/10.1016/0307-904X(83)90003-3
http://dx.doi.org/10.1016/0955-7997(89)90032-5


26 CMES, 2022

18. Brebbia, C. A. (2017). The birth of the boundary element method from conception to application.

Engineering Analysis with Boundary Elements, 77(4), iii–x. DOI 10.1016/j.enganabound.2016.12.001.

19. Brebbia, C. A. (1983). Progress in boundary element methods, vol. 2. New York: Springer.

20. Frangi, A., Novati, G., Springhetti, R., Rovizzi, M. (2002). 3D fracture analysis by the symmetric Galerkin

BEM. Computational Mechanics, 28(3–4), 220–232. DOI 10.1007/s00466-001-0283-x.

21. Fung, Y., Tong, P., Chen, X. (2017). Classical and computational solid mechanics. New Jersey: World

Scienti�c.

22. de Klerk, J. H. (2011). Building a body of knowledge: Cauchy principal value and hypersingular integrals.

AIP Conference Proceedings, 1389(1), 456–459. DOI 10.1063/1.3636762.

23. Timoshenko, S. P., Goodier, J. N. (1970). Theory of elasticity. New York: McGraw-Hill.

24. Ostanin, I. A., Mogilevskaya, S. G., Labuz, J. F., Napier, J. (2011). Complex variables boundary element

method for elasticity problems with constant body force. Engineering Analysis with Boundary Elements,

35(4), 623–630. DOI 10.1016/j.enganabound.2010.11.008.

http://dx.doi.org/10.1016/j.enganabound.2016.12.001
http://dx.doi.org/10.1007/s00466-001-0283-x
http://dx.doi.org/10.1063/1.3636762
http://dx.doi.org/10.1016/j.enganabound.2010.11.008


CMES, 2022 27

Appendix

Kernel functions listed here are utilized in the numerical implementation of the SGBEM. Ker-

nel functions (A1)–(A3) appear in the displacement boundary integral equation; kernel functions

(A2)–(A4) appear in the traction boundary integral equation. µ is the shear modulus.

u
∗p
i (x, ξ)=

1

16πµ(1− υ) r

[

(3− 4υ) δip+ r,ir,p
]

(A1)

G
∗p
ij (x, ξ)=

1

8π (1− υ) r

[

(1− 2υ) eipj + eikjr,kr,p
]

(A2)

ϕ
∗p
ij (x, ξ)= δpj

1

4πr2
r,i (A3)

H∗
ijpq (x, ξ)=

µ

8π (1− υ) r

[

4υδiqδjp− δipδjq− 2υδijδpq+ δijr,pr,q+ δpqr,ir,j − 2δipr,jr,q− δjqr,ir,p
]

(A4)


